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Abstract - The paper investigates the antiplane shear problem of a dissimilar interfacial circular
crack in cylindrically anisotropic composites. Using the theory of analytical functions. a general
solution based on a complex variable displacement function is obtained. which is similar to Lekh­
nitskii's stress potentials for rectilinearly anisotropic material. For some cases. the circular crack
problems are reduced to Hilbert problems which are solved in a closed form. The first three-term
asymptotic expansions of the near crack-tip stress field are given to identify the role of the curvature
effect. The asymptotic solutions are further compared with exact solutions. These solutions show
that the leading term exhibits an inverse square root stress singularity regardless of the material
properties. In order to compare the stress field near the crack tip for a curved crack with that of a
planar crack. a solution for a rectilinearly anisotropic body with a centered straight interfacial crack
is also presented.

I. INTRODUCTION

In predicting an accurate stress field near the crack tip under various loading, antiplane
shear loading is often considered as a model case since closed form solutions are attainable
in some instances. These solutions provide a basis for a qualitative fundamental under­
standing of the more complicated in-plane loading. Crack problems may be classified into
two categories depending on the type of crack geometry considered. The first class of the
problems involves planar or straight cracks. The shear tractions acting on the crack surfaces
of an infinite solid in homogeneous orthotropic materials under longitudinal shear has been
examined by Sih and Chen (1981), using the complex potentials technique introduced by
Muskhelishvili (1953). Zhang (1984) investigated a finite body containing an interfacial
crack between two isotropic solids under surface-loaded shear tractions using Fourier
transform and Fourier series methods. Wu and Chiu (1991) studied the antiplane shear
interface crack problem loaded along the boundary of a finite anisotropic body using an
integral equation formulation with a boundary collocation method. Recently, a kinked
crack in homogeneous media and a kink interfacial crack under uniform crack surface
tractions has been studied by Choi and Earmme (1990) and Choi et al. (1994) using the
Mellin transform and Wiener-HopI' technique.

The second group of the problems involves curved or nonplanar cracks. This class of
problems is of particular interest in micromechanics. for predicting fracture between the
fiber and the matrix. Sih (1965) derived and solved a circular crack in an infinite homo­
geneous isotropic body under remote longitudinal shear using a conformal mapping tech­
nique. For interfacial curved crack problems. Tamate and Yamada (1969) presented a
solution of a partially debonded circular interface crack between inclusion and matrix
under remote antiplane shear stresses. Smith (1969) studied a partially debonded interface
of a circular inclusion under remote antiplane shear stresses and a debonded surface shear
loading using the method of dislocations. Karihaloo and Viswanathan (1985) used an
Eshelby's equivalent inclusion method to study an elliptic shaped interface crack between
two isotropic materials. The fiber-matrix interfacial crack has been recently addressed by
Teng (1992) and Teng and Agah-Tehrani (1993) by considering the interaction between
neighboring fibers using a generalized self-consistent scheme and a periodic array model.
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In this paper a circular interfacial crack between dissimilar cylindrically anisotropic
composites subjected to antiplane shear is presented. In the next section, the basic equations
of cylindrically anisotropic elasticity under antiplane shear are formulated based on a
complex variable displacement function. A general solution for the stress and displacement
in a cylindrically anisotropic composite is established in Section 2. The solution of constant
shear tractions acting on the interface for both regions with material anisotropy is con­
sidered in Section 3. Another example which simulates the anisotropic fiber imbedded in
an isotropic matrix is studied. The derivation and solution of an interfacial circular crack
under remote antiplane shear stresses are examined. In this paper, asymptotic solutions up
to the third-term expansion are derived to elucidate the role of curvature on the angular
distributions of stresses near the crack tips. For comparison of the crack-tip stress field
between circular and straight cracks, a planar interfacial crack between dissimilar rec­
tilinearly anisotropic solids under constant surface shear tractions is derived and discussed
in the Appendix,

2. MATHEMATICAL FORMULATION

Consider a cylindrically anisotropic elastic body deformed under antiplane shear. The
strain--displacement, stress-strain, and the equilibrium equation in the absence of body
force are given by

C\I' I all'
I'rc = cr i'lic = -;: 3e (1)

(2)

(3)

where 11'(1', e) is the displacement in a direction perpendicular to the x-y plane, 'Ypz and Tpz

are strain and stress components, respectively, eli are the stiffness coefficients.
Substituting eqns (I) and (2) into eqn (3), the equilibrium equation can be written as

(4)

A general solution of eqn (4) which is similar to Lekhnitskii's (1963) complex variable
stress potentials in the rectilinearly anisotropic material can be expressed as

w(r,O) = 2 Re [W(Z3)]

where a new argument Z3 is defined as

:; 3 = (~) - ii. - 1 re ili

(5)

(6)

where a is a characteristic length designated here as the radius of the circular arc. The). are
roots of the following algebraic characteristic equation

(7)

When the material is isotropic, ;. becomes i. The roots of eqn (7) are either complex or pure
imaginary but cannot be real. Without loss of generality, ;. is chosen as
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where Re (-iJ..) = .J C44 CS - C1 sIC S5 > O. It is convenient to introduce a function

so that stress components can be simply written as
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(8)

(9)

and

(10)

where J1 = JC44 CSS -c1s and a bar denotes a complex conjugate.
Having established the general solution for the stress and displacement in a cylindrically

anisotropic material, we can study the interfacial curved crack between dissimilar
cylindrically anisotropic materials in the next section.

3. INTERFACE CRACK BETWEEN DISSIMILAR CYLINDRICALLY ANISOTROPIC
MATERIALS

Consider a circular crack lying along the interface of two cylindrically anisotropic
elastic solids, subtending an angle 2ex at the center of the circle as shown in Fig. I. Further,
let equal and opposite known tractions rea ell) be applied to each crack surface. Then the
boundary conditions along::: = a eiO are

r":wl II cJW'2 1

1;.;) = r~~l
cO DO on 1:::1 = a, 181 >ex (11 )

and

r~; ) = r(ae iO
) r::,1 = r(aell

) on 1:::1 = a, 181 < ex. (12)

Here, and in the sequel, the superscripts or subscripts I and 2 denote the internal and

y

x

Fig. I. Geometry and coordinates of an interfacial curved crack between cylindrically anisotropic
materials.
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external materials respectively. From eqns (9) and (10), the conditions (II) and (12) can
be rewritten in the form

I - -
- [<D] (.:) -cD] (.z)] = [<D 2 (z) -<D 2 (:')]

1/] 1/2 on Izl = G, lei >:J.
<D] (z)+<D] (:') = <D 2 (.:)+<D2 (:')

on Izl = G, lei < lx.

where:' = a 2
.:. The following two cases are considered in this paper.

(13)

(14)

Crack under surFace rracrion
For the case of constant surface traction T(Z) = - To with zero stresses at infinity, it

readily follows from eqn (13) that

Defining two new functions

on Izi = G, lei> lx.

(15)

(16)

then the displacements and stresses described by '¥ and 0 are continuous across the
interface. In eqns (15) and (16), '¥(z) and 0(z) are analytic functions in the whole plane
cut along the arc,. = a, 101 < lX, with the possible exclusion of the origin and infinity. Note
that S+ and S- are the inner and outer regions respectively. Based on the definition of eqns
(15) and (16), we have

_(a2
) (G

2
)If' .: = '¥(z) 0 .: = -0(z) ZES+ and S-. (17)

Solving eqns (15) and (16) for <D](.:) and <D 2(z). we obtain
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Substituting egn (18) into the remaining condition (12) yields

that is,

I /-11 +/-12
qt+(z)+qt-(z)+ -[S+(z)-S-(z)] = ~-ar(z)

/-12 /-11/-12

1 /-11 +/-12
qt+(z)+qt-(z)- -[S+(z)-S-(z)] = --ar(z)

/-1! /-11/-12

on Izi = a, 181 < ex (19)

where '1'+, S+ and '1'-, S- are the limiting values of the functions approaching from S+
and S- to the crack surfaces respectively. The unknown functions qt(z) and S(z) are
governed by eqns (20), which are a pair of Hilbert problems. The solutions for eqns (20)
have been given by Muskhelishvili (1953) as

S(z) = P(z)

I /-11+/-12 I T(t)dt
qt(z) = -. --axo(z) .. +Xo(z)R(z)

27[/ /-11/-12 LXt(t)(t-z)

(21)

(22)

where P(z) and R(z) are holomorphic functions in the whole plane except possibly at the
origin and infinity; L is the arc Izi = a, 181 < ex, and

With T(Z) = -To = constant along the crack surface, 'I' can be simplified as

/-11 +/-1?
qt(z) = - -2--- Toa[l + (acos ex - z)xo(z)] +Xo(z)R(z).

/-11/-12
(23)

By replacing the argument z of functions S(z) and qt(z) by Z3 in eqns (21) and (23),
the complete functions of S(Z3) and qt(Z3) can be obtained. If the body is taken to be
infinite in extent and the stresses are assumed to vanish at infinity, it is sufficient to assume

1 2

S(Z3) = L DkZ~ R(Z3) = L CkZ~
k~-I k~-I

From eqns (9) and (18), we have

(24)

(25)
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(2) = ~ J.ll/i~_R l' (UJ(7 )+ 0(Z3))]ro: e 1'2 T ~ 3
r J.l1 + J.l2 J.l1

(26)

Since Re( - Uk) > 0, lim Iz 31 = 0 and lim Iz31 -->:1:;. Moreover, when the center of the
r_O r_A

internal region is approached, anisotropic material occupies the central portion of the
region, thereby ;'1 --> i as r --> O. On examining the stresses at the origin and infinity, we find

(27)

From eqn (17) and the condition of a single-valued displacement field, we have

_ , C_I
C2a-+~- = 0

a

1m (Do) = O.

The solutions to eqns (27) and (28) are

C_ 1 = C 1 = C2 = D_ I = Do = D , = O.

Thus we get

(28)

(29)

From eqns (25), (26) and (29), the entire stress field can be found. Expanding \fI(Z3) for a
small distance p from the crack tips, z = a e±i" and keeping terms up to the order of
O(vP), the first three-term asymptotic expansions of the crack-tip stress field are

3

r_;.~) = L AiP"f~~, (q;) ( = r, e, k = 1,2
i= I

(30)
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-LSl = O,S, = ~

I'?;; y.

Al = To -.-sin~2' A 2 = -T(),
\J sm Y.
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-(I) - [ ;'k ]
'liz - Re ,

, J COS <p + ;'k sin <p

and the quantities with (~ ) represent their angular distributions.
Using stress transformations,

we have

T~.~) = =+= I AiP"f~.~~(<p) Y= p, <p near B, A = aeII>
I = I

where

_( I) _ [Sin <p - i'k cos <p ]'pz, - Re . '
J cos <p + Ak sin <p

f~:: = Re [sin <p -},k cos <p], f~~: = Re [cos <p + I'k sin <p]

(31 )

(32)

(33)

When a ~ OC, with the length 2aC/. being kept constant, the curved crack approaches a
planar crack and the cylindrical anisotropy approaches the rectilinear anisotropy. The
asymptotic solution of the near crack-tip stress fields up to the third-term expansion is

where

T~.k) = =+= I BiP"f~0.c<p) "r' = p,<p nearB,A = ae±i,
i = 1

(34)
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lim AI=To {a~ B2 = lim A 2 =-To(/- x_ ~--~ {/---;..J:..

1I'l. = C011st a'".t = const

B] = lim A 3 = To fI
2

l

Q-C/J ~~
a'Y- = canst

(35)

and t;;2" r::~" i = 1,2 remain the same as those of curved crack given by eqn (33), while

-( 3) R [3. • ) / ..]
T pc, = e 4(slncp-J'kcOSCP yCOScp+AksmCP

Note that the length of the planar crack is 2ay. in eqn (35).
Comparing the stress field for the curved crack [eqn (32)] with the case for the planar

crack [eqn (34)], it is clear that both the stress fields have identical angular distributions
for the first two-terms, but the angular distributions for the third term are different in the
two cases. A relevant problem of rectilinearly anisotropic solids with interfacial cracks
under surface tractions shown in Fig. 2 is derived and compared in the Appendix.

The singular term for both circular and planar cracks can be written in the form

(36)

where Kill is the stress intensity factor, and

r--' .

K c - /-, ,y. _ ~ovansm~ /2 A 'or a curved crack
III - To I 4-an tan - - - = V n I .'

\j 2 y.
cos 2

Kill = lim K~1l = Tn" nay. = .J2nB I for a planar crack,
a -4 y

a~ = cDnsl

(37)

The superscripts c and s stand for the quantities associated with a circular and a planar
crack respectively. If both the inner and outer materials are isotropic, the leading term of
eqn (30) coincides with that given by Smith (1969).

Crack under uniform shear stresses at infinity
At infinity, the body is subjected to uniform shear stresses Tc = T::, Tyz = '!~,

Izi ~ CD Izl ~ CD

which make an angle (J with the x-axis, and the surface is free of tractions. It readily follows
from eqn (14) that

(38)

Thus if we define the two new functions as

(39)
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then the condition of traction-free on the crack surfaces is satisfied. In eqn (39) 'P(z) and
0(.::) are analytic functions in the whole plane cut along the arc r = G, 181 < a, with the
possible exclusion of the origin and infinity. Based on the definition in eqn (39), we have

(40)

Using eqn (39), condition (13) can alternatively be written as

'P+(z)+0+(z)-['P (z)+0 (z)] = o.

(41)

Izi = G, 181 > a

(42)

The unknown functions 'P(z) and 0(z) are governed by eqns (41) and (42) which are a pair
of Hilbert problems. The solution to eqns (41) and (42) can be expressed as

'P(z) 0(z)
'P(z)+0(z) = P(z) _. - - = Xo(z)R(z)

PI fJ.c

where

(43)

I

P(z) = L
I. ~ I

R(z) = L
k ~ I

C J
k-

Solving eqns (43) for 0(z) and 'P(z) yields

PIPo lP(Z) J0(z) = ---- -- .. -Xo(z)R(z) .
PI + Pc PI

(44)

Replacing the argument 2 of functions 'P(.::). 0(z) by 23 and using eqns (9), (39) and (44),
the stresses can be expressed in the form

(45)

(46)
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Further assume the external matrix material is isotropic, that is, A2 = i and Z3 = z for z E S-.
On examining the stress at origin and infinity, we find

D_
I

C I-+---=0
J1.2 a

h J( 00)2 (.00)2 f3 x . f3 xwere .0 = .x +.y , .0 cos = T, '.0 sin = T" .

From eqns (40) and the condition of single-valued displacement, we get

D_ 1 C_ 1 15 1 2 - 2
--+--= --a -C2 a

J1.2 a J1.2

Do Co cos a: 150 - -- + - + -,-C- 1 = - - -C, -C2acosa:
J1.2 a a- Ih

1m (Do) = O.

Solving eqns (47) and (48) for Ck and Db we find

(47)

(48)

Do = 0

3
_ ·oa i~

C_ 1 - 2 e
J1.2

C - _~ -ip
2 - 2J1.2 e . (49)

This leads to the stress solution

where (z3h is abbreviated as Z3' Expanding the stress field for small values of p from the
crack tips, the first three-term asymptotic expansions of the crack-tip stress field can be
expressed as
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J

T~.~) = I AipS'f~~,(cp) i' = r, e, k = 1,2
i= 1

3613

(50)

f;;; = 0

-( I) - R [_ Ak ]
Ti/- - e

-k J cos cp + )'k sin cp

e±i']
2 near B,A = ae±12

+sincpsin:x i(i-I,dsin:x , ,.
<l>3k = - + ().ksin-CP+lcos-cp+sm2cp)J cos cp + I'k sin cp 4(cos cp + Ak sin cp) J 2

/ ,. [2 cos (13 +: ~ex) ± i sin C( e -il/l+,2)

V cos cp + Itk sm cp ()+ ex
2 cos 13 +: 2:

)11 To /~. (_ ex')
Al = ---y2aslllexcos 13 + ~

)11 + 112 "-

near B, A = ae±i.,

III To / 2- (_ ex)A J = --- I-.--cos 13 + -
III + 112 \j a Sill ex 2

Using stress transformation in egns (31), we obtain

T~:) = +: I AiP"f~~~ (cp) i' = p, cp, near B, A = a e±i.
i= 1

where

(51)

-II) _ R [ sin cp - J.k cos cp lT p _ - e
-k J cos cp + I'k sin cp

-I') Ilk R [ "]T: = - ----cos cp e -I)'k
P-k ;--

ylll1l2

f;'~_;_ = Re [(sin cp - I'k cos cp )<I>3k +: J cos cp ~ )'k sin cp cos cp sin ex] ]

[
Slllcp-ItkCOSCP ] nearB,A = ae±i.,

f~J. = Re (cos cp + J.k sin cp )<I>3k ±! ,. cos cp sin ex
V cos cp + )'k Sill cp

By the use of expressions of the stress field for the curved crack in cylindrically anisotropic
materials, the near crack-tip stress fields for the following special cases can be obtained:
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(1) Planar crack in rectilinearly anisotropic materials
Letting a -> x, and keeping act. = constant, it follows that

1;~) ==+= I B,P"f;~),(rp) }' =p,rp. nearB,A =ae±I>
i= 1

where f;:~" f;;~" i = 1,2 are the same as those for the curved crack.

/11 1 0 ;-
lim A I = --- v' 2act. cos fJ
a-x /11 +/11

OJ: = consl

(2) Curved crack in two isotropic materials
Letting )'k = i, k = 1, 2. from the results for anisotropic materials, we have

.1

1(l:, = - L AiP"f~~~(rp) ,'=p,rp, nearB,A =ae±i,
i = I

where

(52)

(53)

-III rp
1,pc, = cos "2

-(1) 11k .
1 <pc, = --- Sin qJ

JI1I/11

Introducing the stress intensity factor K llh the leading term in eqns (50) may be written as

where

1;ki =~Rel ~ I:. -l
J2rrp J cos rp + i k sin rp

(54)

2111 ~-(. ct. .. ct.) c-Kill = ---y' arr sin ct. 1: cos - ± T\~ Sin -2 = y' 2rrA I
/11 + !i1 2

(55)
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Fig. 2. Geometry and coordinates of interfacial planar crack between rectilinearly anisotropic
materials.

and G2 is the shear modulus of the external material.
If the inner material is isotropic, then i[ = i, the singular terms of egns (54) are in

accord with the results obtained by Tamate and Yamada (1969) and Smith (1969).

4. RESULTS AND DISCCSSION

For the case of a constant surface traction along a crack surface, the stress intensity
factor is plotted in Fig. 3 with crack angles ranging from 0 to Jr. The stress intensity factor
increases monotonically as the crack angle increases. When the extent of the interfacial
crack approaches complete debond, the stress intensity factor becomes unbound. The ratio
of the stress intensity factors between the curved crack and the straight crack with the same
crack length is shown in Fig. 3(b). From the figure it can be observed that the stress intensity
factor for the curved crack is always greater than that of a straight crack. The angular
distribution for the singular term is the same for the surface traction and the prescribed
uniform stress at infinity. Figs 4-7 show the stress angular distributions for orthotropic

materials and}' = y' C44 !C-;, (i = i,,). The angular distributions. r;,~) and ~l=" for three
different anisotropy ratios " = I, 2, and 3 are depicted in Fig. 4. The isotropic case with
'Y = I is plotted for comparison purposes. It is seen that as the anisotropy ratio increases,
the gradient of the angular distribution increases and the maximum value of ~1) shifts
further from the interface. The second-term expansions for both cases follow simple trig­
onometric functions and they will not be discussed here. Figures 5-7 describe the angular
distribution for the third-term expansion as functions of crack angles with the anisotropy
ratio being a parameter. In Fig. 8. comparison of the three-term asymptotic solution with
the exact solution and singular solutions at the upper tip B are studied. The singular term
solution matches the exact solution as the distance p asymptotically approaches the crack
tip, while the third-term solution coincides with the exact solution in the much larger region
from the crack tip.
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6 Constant Surface Traction

Fig. 3(a). Variation of Kill on the crack geometry.

7

Constant Surface Traction
6

2

nn/2
O'--"'---'----'--'----L----J_"'---'---'-.........--'-----'_'---'---'---'--'---l

o
0;

Fig. 3(b). Ratio of stress intensity factor between curved and planar crack.

For the case of prescribed uniform shear stresses at infinity, the crack surface is free
of traction and the outer material is isotropic. Fig. 8(a) shows the variation of the stress
intensity factor with respect to the crack angle for three different loading angles. The ratio
of the stress intensity factor between the curved crack and the straight crack for three
different crack angles with identical crack length is shown in Fig. 8(b). Lastly, Figs 9-10
illustrate the stress angular distribution of the third term in the orthotropic material 1.
Since the angular distribution varies with the loading angle, in these figures three different
loading angles f3 = 0, n/4, and nl2 are shown. Also, the case of a planar crack is also plotted
for comparison. In the figures, two crack angles rx = nl4 and nl2 for a fixed anisotropic
ratio}' = 2 are taken as examples.



Interfacial circular crack in anisotropic composites 3617

4,---------------------------,

---

--y=1
2
3

....... ­
"

" ,

"
",,, ,.., ,.., ,..

, "" ,..
, "
'~":.------I,,,

~

o
...... _----

-1

o 30 60 90

<p (Degree)
120 150 180

1.4 ,--------------------------,

_.... ----- ..

18015012090

<p (Degree)
60

--y=1

2
3

30

-----­
... :.. --

1.2

o.0 l..-L~L....-_'__ _'_.........__'_..J._..,.__'_..J._..,._'_..L....._'_..L.....__'_...L_.,'_'__L_'_'__L_'__'_...L.L._l.3

o

0.2

0.4

0.6

1.0

0.8

Fig. 4 Stre" angular distrihutIon of the leading term for various y. (a) fpc; (b) f wc •

5. CONCLUSIONS

The problem or a dissimilar interfacial circular crack in cylindrically anisotropic
composites under anti plane shear was studied. A complex variable displacement function,
supported by the theory of analytic solutions, was introduced to solve this class of problem
in a closed form for some cases. The asymptotic solutions up to the third-term expansion
were derived in assessing the role of curvature on the angular distribution of the stresses.
The dissimilar interfacial straight crack in rectilinearly anisotropic composites under anti­
plane shear was also formulated and can be obtained from the curved interfacial crack in
cylindrically anisotropic composites as a -> ox:. Based on the formulation and numerical
results, the following conclusions are drawn:

(I) The inverse square root stress singularity and higher-order stress exponents in the
asymptotic expansion of the near crack-tip stress fields are independent of material ani­
sotropy and material properties across the interface.

SAS 32-24-F
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(2) The stress intensity factor for the curved crack is greater than that of a straight
crack for constant surface traction. In other words. the curvature of the crack enhances the
stress intensification near the crack tip.

(3) The asymptotic solutions for the curved crack reveal that although the amplitudes,
A k , (k = 1,2,3, ... ), may be dependent on crack geometry, the stress angular distributions
for the first singular term and the second term are independent of the crack geometry. In
fact, the angular distribution of the first term only depends on parameter i. k • The curvature
effect on the angular distribution only enters from the third-term. Therefore, the curved
crack and the straight crack have identical angular distribution for the first two terms.

(4) The third-term angular distribution of stress may vary with the loading conditions
and the crack geometry.
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(5) The first three-term asymptotic solution provides accurate stress distributions in a
much larger region near the crack tip, while the leading term solution only gives accurate
stress distributions in the limit as r ---+ O.

AeknOlI'/e(~qment This rcscClrch IS supported by the National Science Foundation GrClnt "10. MSS-9202223.
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APPENDIX

Straight crack hetll'eell dissimilar rectilinearll' anisotropii materials
Consider a rectilinear anisotropic body to be deformed such that the only non vanishing displacement component
is along the ~-axis. The stralll displacement. stress strain. and equilibrium equation in the absence of body force
based on an Xl' coordinate system are

(A.I)

('y + =0

(A.2)

(A3)

where \fix. l') is the longtudinal displacement. and /!!c and T/ie are strain and stress components respectively Ci, are
stiffness coefficients. Using cqns (A.I) and (A.2). the equilibrium equation (A.3) yields

A general solution ror eqll (A.4) can be expressed as

II (Y.I) = 2 Rc [W(~)]

where ~, = X + I\'. the constants .\ are rooh or the followll1g algebraic characteristic equation

(A.4)

(A5)

=0 (A.6)

and s is chosen as

with Im[s] # O. It is expedient tl) define
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. '---,d W(~J)
<1>(~;) = 1,/1'441'" -1'4< d~. (A.7)

so that the shear stresses may be simply written as

r, = 2Re[<1>(~;)J ,,= - 2Re[s<1>(~)1

and

i --
- - [<1>(~J)-<1>(f)]

/1

(A.8)

(A.9)

where J1 = V"C44C~S -C~5'

Consider a crack of length 2a lying along the interface of two anisotropic elastic solids as shown in Fig. 2.
Further, let equal and opposite known tractions rex) be applied to each face of the crack. Then boundary
conditions along .I' = °are

r-H,lll

(Jx
on v = 0, Ixl > a (A. 10)

r: 11 = r(x) r'," = r(.\) onl' = 0. Ixl < a. (A.II)

Here, and in the sequel, the superscripts and subscripts I and 2 refer to the quantities associated with the materials
occupying the lower and upper half planes respectively. From eqns (A.8b) and (A.9), eqn (A. 10) leads to

I - I -
--[<1>I(~)-<1>I(f)l = -[<1>,(~)·-<1>.(f)l

."1 I', ony=O, Ixl>a
<1>, (~)+<i>I(f) = <1>:(~)+<i>,(f)

which may be rewritten in the form

- I
<1>1 (~) -- <1>, (f) =- <1>, (~) + -- <1>1 (f)

1'1 I', I', Ilion v = 0, Ixl > a.

<1>1 (~)-<1>,(f) = <1>,(:) <il, (f)

Thus, if we define

(A.12)

<1>1(~) <1>.(f) == 0(~) ~ES

<1>,(:)-CD I(f) == 0(c) CES

then the displacements and stress are continuous across the interface. 'l'(:) and 0(.:) are analytic functions in x­
l' plane cut along.t· = 0, Ixl < a, S - and S+ are the regions of the half planes)' > °and)' < 0, respectively. Solving
eqn (A.12) for<1>I(~) and <1>,(.:). we have

Substituting eqn (A.13) into the remaining condition (1\ II). we have

on)' = O.lxl < a

'l' (C)-'l',(~)-J.[e (':)-0'(~)1=r(.:)/lI+/1'
/11 /11/1,

that is

(A.13)

(A.14)
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(AI5)

where the superscripts + and - stand for the boundary values of the functions as ~ approaches the boundary
from S' and S- respectively The two unknown functions 'P(~) and 0)(~) are governed by egns (A. 15), which are
a pair of Hilbert problems. The solutions of egns (A.15) which have been given by Muskhelishvili (1953) can be
expressed as

I /', +/', I' T(I)dt
'P(~) =:;-- --X..,(~J--'--"---. +X,,(~)R(~)

L1r1 PI P, ./ X" (1)(/ ~)

(A.16)

(Al7)

where P(~) and R(~) are holomorphic in the whole plane except at the origin and infinity; L is the line Ix! < a.
v = 0; and

x"I~) = (~-II) , I~+II) I' (A.18)

If the body is taken to infilllty in extent and the stresses arc assumed to vanish at infinity. Then for the special
case of T(~) = - T" = constant, the solutions to egns (A.16) and IA.I7) are

(-)(~) = () (A.19)

Using egns (A.13) and (A.19). and replacmg the argument: hy : •. we have

- lI·l
"_--,J

- E S

(A.20)

Note that because all boundary conditions are satisfied by <D.(~;), <D,(~;) are the solutions for this problem.
Expanding <DI(~J and <D:(~,) for small values of p from the crack tip. using egn (A.8). the first three-term
asymptotic expansions of the crack-tip stress field can be expressed as

I' 3 .---.
211;' Re [" cos 1,0 +.1, sm ip]

-.\, ] 01 3...::=-==.= - To Re [-.\,J + To' !)- ~ Re [-skyeos if! +S, sin if!]
cos ip +.1, sin Ip y _114

(A.21)

where

Using the stress transformatIOn

r T r, sm Ip += c '.. ~ cos ([)(

r
near~ = ~ II

T" = += r, cos 4' ± r. sin ((J

the expansion of the crack-tip ,[res.' field call he rC\Hitlen In the form

(An)
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- Alii [Sin (() s; cos l{) J .+ -- Re --.---c::::~_.-' ±roRe[s!n(,o-s,COSiPl
\. 2rrp " cos (P + ,"1, SIll ({L

+

h
=+= - III Re[" COSiP-rS, sin,p]±ro Re[cosiP+s,siniPl

" 2rrp

near:: = =+= a. (A.23)

+
.3 . '
- Re [(COS 1,0 +1, S111 wi' 'J

2,,4

In order to compare the distribution between the curved and planar crack, the X- Y coordinate system shown in
Fig. I is exhibited in Fig. 2 The stress-strain relation based on this X- Y coordinate can be written as

(A.24)

Since the relation 111 terms of the onginal local 1'1 coordinate system is given by eqn (A.2). it follows from the
stress and coordinate transformation that

Therefore

I( = (, (A.25)

By replacing by i" in eglb (/\.23). eqns (;\.2.') completely coincide with cqns (34) which are obtained from the
case of cur\'Cd crack as "-4 ./ . Note that 2m in egns (34) is the length of the crack.


